
AbstractComprehensive discovery of structural variation (SV) from whole genome sequencing data requires multiple detection signals including read-pair, split-read, read-depth and prior knowledge. Owing to technical challenges, extant SV discovery algorithms either use one signal in isolation, or at best use two sequentially. We present LUMPY, a novel SV discovery framework that naturally integrates multiple SV signals jointly across multiple samples. We show that LUMPY yields improved sensitivity, especially when SV signal is reduced owing to either low coverage data or low intra-sample variant allele frequency. We also report a set of 4,564 validated breakpoints from the NA12878 human genome. https://github.com/arq5x/lumpy-sv.
Models, Statistical, Models, Genetic, Genome, Human, DNA Mutational Analysis, Homozygote, Method, Genetic Variation, Chromosome Breakpoints, Gene Frequency, ROC Curve, Neoplasms, Humans
Models, Statistical, Models, Genetic, Genome, Human, DNA Mutational Analysis, Homozygote, Method, Genetic Variation, Chromosome Breakpoints, Gene Frequency, ROC Curve, Neoplasms, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1K | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
