
We present a new analysis of the rare decay K_L -> pi0 e+ e- taking into account important experimental progress that has recently been achieved in measuring K_L -> pi0 gamma gamma and K_S -> pi0 e+ e-. This includes a brief review of the direct CP-violating component, a calculation of the indirect CP-violating contribution, which is now possible after the measurement of K_S -> pi0 e+ e-, and a re-analysis of the CP conserving part. The latter is shown to be negligible, based on experimental input from K_L -> pi0 gamma gamma, a more general treatment of the form factor entering the dispersive contribution, and on a comparison with the CP violating rate, which can now be estimated reliably. We predict B(K_L -> pi0 e+ e-) = (3.2 +1.2 -0.8) 10^{-11} in the Standard Model, dominated by CP violation with a sizable contribution (~40%) from the direct effect, largely through interference with the indirect one. Methods to deal with the severe backgrounds for K_L -> pi0 e+ e- using Dalitz-plot analysis and time-dependent K_L-K_S interference are also briefly discussed.
24 pages, 6 figures; v2: minor modifications, published version
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 87 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
