<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Treatment of synthetic 30S particles lacking all of the normally methylated nucleotides with S-adenosyl-[3H]methionine and either an S100 or ribosomal high salt wash extract resulted in ribosome-dependent incorporation of [3H]methyl groups into trichloroacetic acid-insoluble material. No incorporation was observed when naturally methylated isolated 30S particles were used, showing that methylation at unnatural sites did not occur. Enzymatic hydrolysis of the labeled RNA to nucleosides followed by HPLC analysis identified the [3H]methylated residues. Activities for the formation of N6-methyladenosine, N6-dimethyladenosine, 5-methylcytidine (m5C), 3-methyluridine, and N2-methylguanosine were found. Fractionation by ammonium sulfate partially resolved the different activities. All of the fractions with m5C activity were 6-8 times more active on synthetic unmethylated 16S RNA than on synthetic 30S ribosomes, whereas the N2-methylguanosine activity preferred 30S ribosomes to 16S RNA by a factor of more than 10. The N6-methyladenosine and N6-dimethyladenosine activities were 30S ribosome-specific. The m5C activity present in the 55-85% ammonium sulfate fraction of the high salt wash yielded a maximum of 1.0 mol of m5C per mol of 16S RNA, although two m5C residues, positions 967 and 1407, are found in vivo. RNase protection by hybridization with the appropriate oligodeoxynucleotide identified the methylated residue as C-967. Methylation of m5C-967 did not require prior methylation of G-966, and methylation of A-1518 and A-1519 was not dependent on prior methylation of G-1516.
S-Adenosylmethionine, Base Sequence, Molecular Sequence Data, Methylation, Kinetics, RNA, Ribosomal, RNA, Ribosomal, 16S, Escherichia coli, Nucleic Acid Conformation, Ribonucleosides, Ribosomes, Chromatography, High Pressure Liquid
S-Adenosylmethionine, Base Sequence, Molecular Sequence Data, Methylation, Kinetics, RNA, Ribosomal, RNA, Ribosomal, 16S, Escherichia coli, Nucleic Acid Conformation, Ribonucleosides, Ribosomes, Chromatography, High Pressure Liquid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |