
arXiv: 2011.07179
In the era of big data, the need to expand the amount of data through data sharing to improve model performance has become increasingly compelling. As a result, effective collaborative learning models need to be developed with respect to both privacy and utility concerns. In this work, we propose a new federated multi-task learning method for effective parameter transfer with differential privacy to protect gradients at the client level. Specifically, the lower layers of the networks are shared across all clients to capture transferable feature representation, while top layers of the network are task-specific for on-client personalization. Our proposed algorithm naturally resolves the statistical heterogeneity problem in federated networks. We are, to the best of knowledge, the first to provide both privacy and utility guarantees for such a proposed federated algorithm. The convergences are proved for the cases with Lipschitz smooth objective functions under the non-convex, convex, and strongly convex settings. Empirical experiment results on different datasets have been conducted to demonstrate the effectiveness of the proposed algorithm and verify the implications of the theoretical findings.
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Cryptography and Security (cs.CR), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Cryptography and Security (cs.CR), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
