Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cardiovas...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cardiovascular Electrophysiology
Article . 1999 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Voltage‐Gated Na+ Channel Activity and Connexin Expression in C×43‐Deficient Cardiac Myocytes

Authors: C M, Johnson; K G, Green; E M, Kanter; E, Bou-Abboud; J E, Saffitz; K A, Yamada;

Voltage‐Gated Na+ Channel Activity and Connexin Expression in C×43‐Deficient Cardiac Myocytes

Abstract

Na+ Channel Activity in C×43‐Defident Myocytes. Introduction: Dynamic interplay between active and passive electrical properties of cardiac myocytes is based on interrelationships between various channels responsible for depolarizing and repolarizing ionic currents and intercellular conductances. Mice with targeted disruption of the connexin43 (C×43) gene have hearts completely devoid of C×43, the principal gap Junctional protein expressed in mammalian hearts. Methods and Results: To determine whether cardiac myocytes that develop in an abnormal environment of reduced intercellular coupling have altered active membrane properties, we studied whole cell action potentials, Na+ channel currents, and Na+ channel expression and distribution via immunoblotting and confocal immunofluorescence in neonatal ventricular myocytes isolated from C×43 wild‐type, heterozygous, and homozygous null hearts. Action potential morphology, peak Na+ current, activation and inactivation kinetics, and Na+ channel protein expression and distribution were not different among myocytes isolated from wild‐type, heterozygous, or null hearts. Active membrane properties and Na+ channel activity were completely normal in C×43‐deficient myocytes isolated from hearts that have been shown to exhibit markedly reduced C×43 expression, gap junction number, and epicardial conduction delay. Conclusion: Despite a genetic inability to produce C×43 and a developmental history that culminates in marked gross cardiac morphologic abnormalities, premature death, and myocardial inexcitability ex vivo, cardiac Na+ channel distribution and function appear to he normal in C×43 null hearts. Although intimate structural and functional interrelationships have been described between ion channels and gap junction channels, expression and function of Na+ channels is not affected by the absence of C×43.

Related Organizations
Keywords

Mice, Knockout, Heterozygote, Microscopy, Confocal, Myocardium, Homozygote, Heart, Sodium Channels, Mice, Connexin 43, Animals, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!