Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RING Finger Protein AO7 Supports NF-κB-mediated Transcription by Interacting with the Transactivation Domain of the p65 Subunit

Authors: Toshifumi Tetsuka; Takashi Okamoto; Satoshi Kanazawa; Kaori Asamitsu;

RING Finger Protein AO7 Supports NF-κB-mediated Transcription by Interacting with the Transactivation Domain of the p65 Subunit

Abstract

In this study, a novel interactor of the p65 subunit (RelA) of NF-kappaB has been explored by performing yeast two-hybrid screen using the transactivation domain (TAD) of p65 located in the C terminus as bait. We have isolated a RING finger motif-containing protein, AO7, previously identified as an interacting protein with a ubiquitin-conjugating enzyme, Ubc5B. We confirmed the protein-protein interaction between p65 and AO7 in vitro and in vivo and found that the C-terminal region of AO7 is responsible for the interaction with p65 TAD. AO7 was predominantly localized in the nucleus and activated the NF-kappaB-dependent gene expression upon stimulation with IL-1beta or TNF or overexpression of NF-kappaB-inducing kinase. We found that both the RING finger and the C-terminal regions of AO7 were necessary for the transcriptional activation. When cotransfected with plasmids expressing Gal4-p65 fusion proteins containing various functional domains of p65, we found that p65 TAD was essential for the transcriptional activation mediated by AO7. Furthermore, the p65-mediated transactivation was suppressed by a ubiquitination-defective AO7 mutant in which the essential Cys residue within the RING finger motif was substituted by Ser. These data suggest that AO7 interacts with the p65 TAD and modulates its transcriptional activity.

Related Organizations
Keywords

Transcriptional Activation, Sequence Homology, Amino Acid, Ubiquitin-Protein Ligases, Molecular Sequence Data, NF-kappa B, Transcription Factor RelA, Zinc Fingers, In Vitro Techniques, Transfection, Recombinant Proteins, Cell Line, Protein Structure, Tertiary, Mice, Two-Hybrid System Techniques, Mutagenesis, Site-Directed, Trans-Activators, Animals, Humans, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold