Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2010
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Refined LexA transactivators and their use in combination with the Drosophila Gal4 system

Authors: Yagi, R; Mayer, F; Basler, K;

Refined LexA transactivators and their use in combination with the Drosophila Gal4 system

Abstract

The use of binary transcriptional systems offers many advantages for experimentally manipulating gene activity, as exemplified by the success of the Gal4/UAS system in Drosophila . To expand the number of applications, a second independent transactivator (TA) is desirable. Here, we present the optimization of an additional system based on LexA and show how it can be applied. We developed a series of LexA TAs, selectively suppressible via Gal80, that exhibit high transcriptional activity and low detrimental effects when expressed in vivo. In combination with Gal4, an appropriately selected LexA TA permits to program cells with a distinct balance and independent outputs of the two TAs. We demonstrate how the two systems can be combined for manipulating communicating cell populations, converting transient tissue-specific expression patterns into heritable, constitutive activities, and defining cell territories by intersecting TA expression domains. Finally, we describe a versatile enhancer trap system that allows swapping TA and generating mosaics composed of Gal4 and LexA TA-expressing cells. The optimized LexA system facilitates precise analyses of complex biological phenomena and signaling pathways in Drosophila .

Country
Switzerland
Related Organizations
Keywords

1000 Multidisciplinary, 10124 Institute of Molecular Life Sciences, Repressor Proteins, Drosophila melanogaster, Enhancer Elements, Genetic, SX00 SystemsX.ch, SX15 WingX, Genes, Reporter, Trans-Activators, 570 Life sciences; biology, Animals, Drosophila Proteins, Wings, Animal, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 1%
Top 10%
Top 10%
bronze