
arXiv: 2203.15455
Recently, we made available WeNet, a production-oriented end-to-end speech recognition toolkit, which introduces a unified two-pass (U2) framework and a built-in runtime to address the streaming and non-streaming decoding modes in a single model. To further improve ASR performance and facilitate various production requirements, in this paper, we present WeNet 2.0 with four important updates. (1) We propose U2++, a unified two-pass framework with bidirectional attention decoders, which includes the future contextual information by a right-to-left attention decoder to improve the representative ability of the shared encoder and the performance during the rescoring stage. (2) We introduce an n-gram based language model and a WFST-based decoder into WeNet 2.0, promoting the use of rich text data in production scenarios. (3) We design a unified contextual biasing framework, which leverages user-specific context (e.g., contact lists) to provide rapid adaptation ability for production and improves ASR accuracy in both with-LM and without-LM scenarios. (4) We design a unified IO to support large-scale data for effective model training. In summary, the brand-new WeNet 2.0 achieves up to 10\% relative recognition performance improvement over the original WeNet on various corpora and makes available several important production-oriented features.
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
FOS: Computer and information sciences, Sound (cs.SD), Computer Science - Computation and Language, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computation and Language (cs.CL), Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
