Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Astrophysical Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal
Article . 2012 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2012
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES

Authors: Bogdan, Akos; David, Laurence P.; Jones, Christine; Forman, William R.; Kraft, Ralph P.;

THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES

Abstract

The presence of hot X-ray emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC821, NGC3379, NGC4278, and NGC4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC821 and NGC3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo a Type Ia supernova (SN Ia) driven outflow. We detect hot X-ray gas with a temperature of kT ~ 0.35 keV in NGC4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50 arcsec (~3.9 kpc) the estimated gas mass is ~3 x 10^7 M_sun, implying a gas mass fraction of ~0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC4697 has an average temperature of kT ~ 0.3 keV, and a significantly broader distribution than the stellar light. The total gas mass within 90 arcsec (~5.1 kpc) is ~2.1 x 10^8 M_sun, hence the gas mass fraction is ~0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.

14 pages, 8 figures, 3 tables, accepted for publication in ApJ

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Green
gold