Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://epubs.siam.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://epubs.siam.org/doi/pdf...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1137/1.9781...
Part of book or chapter of book . 2019 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Every Testable (Infinite) Property of Bounded-Degree Graphs Contains an Infinite Hyperfinite Subproperty

Authors: Hendrik Fichtenberger; Pan Peng 0001; Christian Sohler;

Every Testable (Infinite) Property of Bounded-Degree Graphs Contains an Infinite Hyperfinite Subproperty

Abstract

One of the most fundamental questions in graph property testing is to characterize the combinatorial structure of properties that are testable with a constant number of queries. We work towards an answer to this question for the bounded-degree graph model introduced in [Goldreich, Ron, 2002], where the input graphs have maximum degree bounded by a constant $d$. In this model, it is known (among other results) that every \emph{hyperfinite} property is constant-query testable [Newman, Sohler, 2013], where, informally, a graph property is hyperfinite, if for every $��>0$ every graph in the property can be partitioned into small connected components by removing $��n$ edges. In this paper we show that hyperfiniteness plays a role in \emph{every} testable property, i.e. we show that every testable property is either finite (which trivially implies hyperfiniteness and testability) or contains an infinite hyperfinite subproperty. A simple consequence of our result is that no infinite graph property that only consists of expander graphs is constant-query testable. Based on the above findings, one could ask if every infinite testable non-hyperfinite property might contain an infinite family of expander (or near-expander) graphs. We show that this is not true. Motivated by our counter-example we develop a theorem that shows that we can partition the set of vertices of every bounded degree graph into a constant number of subsets and a separator set, such that the separator set is small and the distribution of $k$-disks on every subset of a partition class, is roughly the same as that of the partition class if the subset has small expansion.

Keywords

FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Average
Green
bronze