<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 21621533
Disruption of cell-extracellular matrix interaction causes epithelial cells to undergo apoptosis called anoikis, and resistance to anoikis has been suggested to be a critical step for cancer cells to metastasize. EphA2 is frequently overexpressed in a variety of human cancers, and recent studies have found that overexpression of EphA2 contributes to malignant cellular behavior, including resistance to anoikis, in several different types of cancer cells. Here we show that Ephexin4, a guanine nucleotide exchange factor for the small GTPase RhoG that interacts with EphA2, plays an important role in the regulation of anoikis. Knockdown of Ephexin4 promoted anoikis in HeLa cells, and experiments using a knockdown-rescue approach showed that activation of RhoG, phosphatidylinositol 3-kinase (PI3K), and Akt was required for the Ephexin4-mediated suppression of anoikis. Indeed, Ephexin4 knockdown caused a decrease in RhoG activity and Akt phosphorylation in HeLa cells cultured in suspension. In addition, Ephexin4 was involved in the EphA2-mediated suppression of anoikis. Taken together, these results suggest that Ephexin4 mediates resistance to anoikis through activation of RhoG and PI3K downstream of EphA2.
rho GTP-Binding Proteins, Receptor, EphA2, Breast Neoplasms, Nerve Tissue Proteins, Anoikis, Dogs, Animals, Guanine Nucleotide Exchange Factors, Humans, Female, Phosphatidylinositol 3-Kinase, Phosphorylation, Proto-Oncogene Proteins c-akt, Cells, Cultured, HeLa Cells, Signal Transduction
rho GTP-Binding Proteins, Receptor, EphA2, Breast Neoplasms, Nerve Tissue Proteins, Anoikis, Dogs, Animals, Guanine Nucleotide Exchange Factors, Humans, Female, Phosphatidylinositol 3-Kinase, Phosphorylation, Proto-Oncogene Proteins c-akt, Cells, Cultured, HeLa Cells, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 49 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |