
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Brain-specific angiogenesis inhibitor-1 (BAI1) is an adhesion G protein-coupled receptor that has been studied primarily for its anti-angiogenic and anti-tumorigenic properties. We found that overexpression of BAI1 results in activation of the Rho pathway via a Gα(12/13)-dependent mechanism, with truncation of the BAI1 N terminus resulting in a dramatic enhancement in receptor signaling. This constitutive activity of the truncated BAI1 mutant also resulted in enhanced downstream phosphorylation of ERK as well as increased receptor association with β-arrestin2 and increased ubiquitination of the receptor. To gain insights into the regulation of BAI1 signaling, we screened the C terminus of BAI1 against a proteomic array of PDZ domains to identify novel interacting partners. These screens revealed that the BAI1 C terminus interacts with a variety of PDZ domains from synaptic proteins, including MAGI-3. Removal of the BAI1 PDZ-binding motif resulted in attenuation of receptor signaling to Rho but had no effect on ERK activation. Conversely, co-expression with MAGI-3 was found to potentiate signaling to ERK by constitutively active BAI1 in a manner that was dependent on the PDZ-binding motif of the receptor. Biochemical fractionation studies revealed that BAI1 is highly enriched in post-synaptic density fractions, a finding consistent with our observations that BAI1 can interact with PDZ proteins known to be concentrated in the post-synaptic density. These findings demonstrate that BAI1 is a synaptic receptor that can activate both the Rho and ERK pathways, with the N-terminal and C-terminal regions of the receptor playing key roles in the regulation of BAI1 signaling activity.
PDZ Domains, Post-Synaptic Density, Receptors, G-Protein-Coupled, Mice, HEK293 Cells, GTP-Binding Proteins, Animals, Humans, Angiogenic Proteins, Protein Binding, Signal Transduction
PDZ Domains, Post-Synaptic Density, Receptors, G-Protein-Coupled, Mice, HEK293 Cells, GTP-Binding Proteins, Animals, Humans, Angiogenic Proteins, Protein Binding, Signal Transduction
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
