Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
Carcinogenesis
Article . 2013 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2014
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The PML isoform IV is a negative regulator of nuclear EGFR’s transcriptional activity in lung cancer

Authors: Jen-Chong Jeng; Yi Chen Chen; Mong Lien Wang; Cheng-Wen Wu; Hsiang-Yi Chang; Yu-Ting Chou; Erh-Hsuan Lin; +4 Authors

The PML isoform IV is a negative regulator of nuclear EGFR’s transcriptional activity in lung cancer

Abstract

Epidermal growth factor receptor (EGFR) is a membrane-bound receptor tyrosine kinase, which can transduce intracellular signals responsible for cell proliferation. It is frequently overexpressed and/or constitutively activated in non-small cell lung cancer and thus is considered as a major cause of this disease. Recently, EGFR has been found in the nucleus where the nuclear EGFR (nEGFR) can function as a transcription factor activating the transcription of genes such as cyclin D1 gene (CCND1), which is essential for cell proliferation. Nevertheless, how nEGFR's transcriptional activity is regulated remains unclear. Promyelocytic leukemia protein (PML) is a tumor suppressor, which is lost in various cancers including lung cancer. However, the role of PML in the suppression of lung cancer growth is still unclear. When we investigated the role of PML in the regulation of lung cancer cell growth, we found that PML isoform IV (PMLIV) preferentially represses the growth of lung cancer cells bearing constitutively active EGFR. Besides, when growing in the EGFR activating conditions, the growth of EGFR wild-type bearing A549 cells has been repressed by PMLIV overexpression. We also found that PMLIV can interact physically with nEGFR and represses the transcription of nEGFR target genes. We showed that PMLIV is recruited by nEGFR to the target promoters and reduces the promoter histone acetylation level via HDAC1. Together, our results suggest that PMLIV interacts with nEGFR upon EGFR activation and represses the transcription of nEGFR target genes such as CCND1 and thus leading to inhibition of the lung cancer cell growth.

Keywords

Mice, Inbred BALB C, Lung Neoplasms, Mice, Nude, Nuclear Proteins, Acetylation, Histone Deacetylase 1, Cell Growth Processes, Promyelocytic Leukemia Protein, Cell Line, ErbB Receptors, Histones, Mice, HEK293 Cells, Cell Line, Tumor, Animals, Humans, Protein Isoforms, Cyclin D1, Female, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
bronze