Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal siphon-based deadlock prevention policy for a class of Petri nets in automation

Authors: ShouGuang Wang; Chengying Wang; MengChu Zhou;

Optimal siphon-based deadlock prevention policy for a class of Petri nets in automation

Abstract

The mixed integer programming (MIP)-based deadlock detection method plays an important role in the development of deadlock prevention policies for flexible manufacturing systems (FMS). In this paper, an optimal deadlock prevention policy is proposed for a class of Petri nets called Systems of Simple Sequential Processes with Resources (S3PR) without any ξ-resource. A ξ-resource is a one-unit resource place shared by two or more minimal siphons that do not mutually contain each other. Compared with the MIP-based deadlock prevention policies that suffer from the problem of limited behavior permissiveness and high structural complexity, the proposed one can obtain an optimal liveness-enforcing supervisor with lower structural complexity. An FMS example is used to illustrate the application of the proposed deadlock prevention policy.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!