Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Ecologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Ecology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22541/au.17...
Article . 2025 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Host-microbiome associations of native and invasive small mammals across a tropical urban-rural ecotone

Authors: Alessandra Giacomini; Maklarin B. Lakim; Fred Y. Y. Tuh; Matthew Hitchings; Sofia Consuegra; Tamsyn Uren Webster; Konstans Wells;

Host-microbiome associations of native and invasive small mammals across a tropical urban-rural ecotone

Abstract

ABSTRACTGlobal change and urbanisation profoundly alter wildlife habitats, driving native animals into novel habitats while increasing the co‐occurrence between native and invasive species. Host‐microbiome associations are shaped by host traits and environmental features, but little is known about their plasticity in co‐occurring native and invasive species across urban–rural gradients. Here, we explored gut microbiomes of four sympatric small mammal species along an urban–rural ecotone in Borneo, one of the planet's oldest rainforest regions experiencing recent urban expansion. Host species identity was the strongest determinant of microbiome composition, while land use and spatial proximity shaped microbiome similarity within and among the three rat species. The urban‐dwelling rat Rattus rattus had a microbiome composition more similar to that of the native, urban‐adapted rat Sundamys muelleri (R. rattus' strongest environmental niche overlap), than to the closely related urban‐dwelling R. norvegicus. The urban‐dwelling shrew Suncus murinus presented the most distinct microbiome. The microbiome of R. norvegicus was the most sensitive to land use intensity, exhibiting significant alterations in composition and bacterial abundance across the ecotone. Our findings suggest that environmental niche overlap among native and invasive species promotes similar gut microbiomes. Even for omnivorous urban‐dwellers with a worldwide distribution like R. norvegicus, gut microbiomes may change across fine‐scale environmental gradients. Future research needs to confirm whether land use intensity can be a strong selective force on mammalian gut microbiomes, influencing the way in which native and invasive species are able to exploit novel environments.

Country
United Kingdom
Related Organizations
Keywords

Mammals, Host Microbial Interactions, Borneo, RNA, Ribosomal, 16S, Shrews, Animals, Introduced Species, ORIGINAL ARTICLE, Ecosystem, Rats, Gastrointestinal Microbiome

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid