Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Compa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Comparative Neurology
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gamma‐aminobutyric acid (GABA)‐mediated neural connections in the Drosophila antennal lobe

Authors: Kei Ito; Ryuichi Okada; Takeshi Awasaki;

Gamma‐aminobutyric acid (GABA)‐mediated neural connections in the Drosophila antennal lobe

Abstract

AbstractInhibitory synaptic connections mediated by γ‐aminobutyric acid (GABA) play important roles in the neural computation of the brain. To obtain a detailed overview of the neural connections mediated by GABA signals, we analyzed the distribution of the cells that produce and receive GABA in the Drosophila adult brain. Relatively small numbers of the cells, which form clusters in several areas of the brain, express the GABA synthesis enzyme Gad1. On the other hand, many cells scattered across the brain express ionotropic GABAA receptor subunits (Lcch3 and Rdl) and metabotropic GABAB receptor subtypes (GABA‐B‐R1, ‐2, and ‐3). To analyze the expression of these genes in distinct identified cell types, we focused on the antennal lobe, where GABAergic neurons play important roles in odor coding. By combining fluorescent in situ hybridization and immunolabeling against GFP expressed with cell‐type‐specific GAL4 driver strains, we quantified the percentage of the cells that produce or receive GABA for each cell type. GABA was synthesized in the middle antennocerebral tract (mACT) projection neurons and two types of local neurons. Among them, mACT neurons had few presynaptic sites in the antennal lobe, making the local neurons essentially the sole provider of GABA signals there. On the other hand, not only these local neurons but also all types of projection neurons expressed both ionotropic and metabotropic GABA receptors. Thus, even though inhibitory signals are released from only a few, specific types of local neurons, the signals are read by most of the neurons in the antennal lobe neural circuitry. J. Comp. Neurol. 514:74–91, 2009. © 2009 Wiley‐Liss, Inc.

Keywords

Neurons, Microscopy, Confocal, Glutamate Decarboxylase, Brain, Gene Expression, Receptors, GABA-A, Immunohistochemistry, Drosophila melanogaster, Receptors, GABA-B, Synapses, Animals, Drosophila Proteins, RNA, Messenger, In Situ Hybridization, Fluorescence, gamma-Aminobutyric Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?