
arXiv: 2409.15881
Previous research in software application domain classification has faced challenges due to the lack of a proper taxonomy that explicitly models relations between classes. As a result, current solutions are less effective for real-world usage. This study aims to develop a comprehensive software application domain taxonomy by integrating multiple datasources and leveraging ensemble methods. The goal is to overcome the limitations of individual sources and configurations by creating a more robust, accurate, and reproducible taxonomy. This study employs a quantitative research design involving three different datasources: an existing Computer Science Ontology (CSO), Wikidata, and LLMs. The study utilises a combination of automated and human evaluations to assess the quality of a taxonomy. The outcome measures include the number of unlinked terms, self-loops, and overall connectivity of the taxonomy. The results indicate that individual datasources have advantages and drawbacks: the CSO datasource showed minimal variance across different configurations, but a notable issue of missing technical terms and a high number of self-loops. The Wikipedia datasource required significant filtering during construction to improve metric performance. LLM-generated taxonomies demonstrated better performance when using context-rich prompts. An ensemble approach showed the most promise, successfully reducing the number of unlinked terms and self-loops, thus creating a more connected and comprehensive taxonomy. The study addresses the construction of a software application domain taxonomy relying on pre-existing resources. Our results indicate that an ensemble approach to taxonomy construction can effectively address the limitations of individual datasources. Future work should focus on refining the ensemble techniques and exploring additional datasources to enhance the taxonomy's accuracy and completeness.
17 pages, 8 tables, 6 figures, and appendix
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
