Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Human Proliferating Cell Nuclear Antigen Regulates Transcriptional Coactivator p300 Activity and Promotes Transcriptional Repression

Authors: Debabrata Chakravarti; Rui Hong;

The Human Proliferating Cell Nuclear Antigen Regulates Transcriptional Coactivator p300 Activity and Promotes Transcriptional Repression

Abstract

Chromatin structure plays an important role in DNA replication, repair, and transcription. p300 is a transcriptional coactivator with protein acetyltransferase activity, and proliferating cell nuclear antigen (PCNA) plays important roles in DNA replication and repair. It has been shown recently that p300 is necessary for DNA synthesis and repair. However, it is not known whether human PCNA, in a reciprocal manner, can regulate the enzymatic activity and transcriptional regulatory properties of p300. Here we show that human PCNA associates with p300 and potently inhibits the acetyltransferase activity and transcriptional activation properties of p300. Surprisingly, PCNA fails to inhibit p300/CBP-associated factor (PCAF) acetyltransferase function as well as PCAF-dependent transcription. Additionally, PCNA potently represses transcription when targeted to chromatin in vivo. Consistent with these observations, using chromatin immunoprecipitation assays, we demonstrate that PCNA recruitment to promoters causes hypoacetylation of chromatin. Together, our results demonstrate for the first time a novel role for human PCNA in transcriptional repression and in modulating chromatin modification. The reciprocal modulation of p300 and PCNA activities by each other provides an example of integrative regulatory cross-talk among chromatin-based processes such as DNA transcription, repair, and synthesis.

Related Organizations
Keywords

Binding Sites, Acetylation, Cell Cycle Proteins, DNA, Immunohistochemistry, Chromatin, Cell Line, Histones, Mice, Acetyltransferases, Mutagenesis, NIH 3T3 Cells, Animals, Humans, Electrophoresis, Polyacrylamide Gel, Enzyme Inhibitors, Immunosorbent Techniques, Glutathione Transferase, HeLa Cells, Histone Acetyltransferases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Average
Top 10%
Top 10%
gold