Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
BioEssays
Article . 2001
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila peripodial cells, more than meets the eye?

Authors: Gerold Schubiger; Matthew C. Gibson;

Drosophila peripodial cells, more than meets the eye?

Abstract

AbstractDrosophila imaginal discs (appendage primordia) have proved invaluable for deciphering cellular and molecular mechanisms of animal development. By combining the accessibility of the discs with the genetic tractability of the fruit fly, researchers have discovered key mechanisms of growth control, pattern formation and long‐range signaling. One of the principal experimental attractions of discs is their anatomical simplicity — they have long been considered to be cellular monolayers. During larval stages, however, the growing discs are 2‐sided sacs composed of a columnar epithelium on one side and a squamous ‘peripodial’ epithelium on the other. Recent studies suggest important roles for peripodial epithelia in processes previously assumed to be confined to columnar cell monolayers. BioEssays 23:691–697, 2001. © 2001 John Wiley & Sons, Inc.

Related Organizations
Keywords

Larva, Metamorphosis, Biological, Animals, Drosophila, Eye, Models, Biological, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?