Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Risk and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Risk and Financial Management
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting Cryptocurrency Fraud Using ChaosNet: The Ethereum Manifestation

Authors: Anurag Dutta; Liton Chandra Voumik; Athilingam Ramamoorthy; Samrat Ray; Asif Raihan;

Predicting Cryptocurrency Fraud Using ChaosNet: The Ethereum Manifestation

Abstract

Cryptocurrencies are in high demand now due to their volatile and untraceable nature. Bitcoin, Ethereum, and Dogecoin are just a few examples. This research seeks to identify deception and probable fraud in Ethereum transactional processes. We have developed this capability via ChaosNet, an Artificial Neural Network constructed using Generalized Luröth Series maps. Chaos has been objectively discovered in the brain at many spatiotemporal scales. Several synthetic neuronal simulations, including the Hindmarsh–Rose model, possess chaos, and individual brain neurons are known to display chaotic bursting phenomena. Although chaos is included in several Artificial Neural Networks (ANNs), for instance, in Recursively Generating Neural Networks, no ANNs exist for classical tasks entirely made up of chaoticity. ChaosNet uses the chaotic GLS neurons’ property of topological transitivity to perform classification problems on pools of data with cutting-edge performance, lowering the necessary training sample count. This synthetic neural network can perform categorization tasks by gathering a definite amount of training data. ChaosNet utilizes some of the best traits of networks composed of biological neurons, which derive from the strong chaotic activity of individual neurons, to solve complex classification tasks on par with or better than standard Artificial Neural Networks. It has been shown to require much fewer training samples. This ability of ChaosNet has been well exploited for the objective of our research. Further, in this article, ChaosNet has been integrated with several well-known ML algorithms to cater to the purposes of this study. The results obtained are better than the generic results.

Keywords

Cryptocurrency; blockchain; ChaosNet; GLS Neurons; Artificial Neural Network

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
gold