Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Journal
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Journal
Article . 2014
versions View all 3 versions
addClaim

Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α‐tropomyosin molecule

Authors: Matyushenko, Alexander M.; Artemova, Natalia V.; Shchepkin, Daniil V.; Kopylova, Galina V.; Bershitsky, Sergey Y.; Tsaturyan, Andrey K.; Sluchanko, Nikolai N.; +1 Authors

Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α‐tropomyosin molecule

Abstract

Tropomyosin (Tm) is an α‐helical coiled‐coil protein that binds along the length of actin filament and plays an essential role in the regulation of muscle contraction. There are two highly conserved non‐canonical residues in the middle part of the Tm molecule, Asp137 and Gly126, which are thought to impart conformational instability (flexibility) to this region of Tm which is considered crucial for its regulatory functions. It was shown previously that replacement of these residues by canonical ones (Leu substitution for Asp137 and Arg substitution for Gly126) results in stabilization of the coiled‐coil in the middle of Tm and affects its regulatory function. Here we employed various methods to compare structural and functional features of Tm mutants carrying stabilizing substitutions Arg137Leu and Gly126Arg. Moreover, we for the first time analyzed the properties of Tm carrying both these substitutions within the same molecule. The results show that both substitutions similarly stabilize the Tm coiled‐coil structure, and their combined action leads to further significant stabilization of the Tm molecule. This stabilization not only enhances maximal sliding velocity of regulated actin filaments in the in vitro motility assay at high Ca2+ concentrations but also increases Ca2+ sensitivity of the actin–myosin interaction underlying this sliding. We propose that the effects of these substitutions on the Ca2+‐regulated actin–myosin interaction can be accounted for not only by decreased flexibility of actin‐bound Tm but also by their influence on the interactions between the middle part of Tm and certain sites of the myosin head.

Country
Russian Federation
Keywords

Calcium, Tropomyosin, Myosins, Actins, Protein Structure, Secondary, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze