Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hardness of Graph Pricing Through Generalized Max-Dicut

Authors: Lee, Euiwoong;

Hardness of Graph Pricing Through Generalized Max-Dicut

Abstract

The Graph Pricing problem is among the fundamental problems whose approximability is not well-understood. While there is a simple combinatorial 1/4-approximation algorithm, the best hardness result remains at 1/2 assuming the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate within a factor better than 1/4 under the UGC, so that the simple combinatorial algorithm might be the best possible. We also prove that for any $ε> 0$, there exists $δ> 0$ such that the integrality gap of $n^δ$-rounds of the Sherali-Adams hierarchy of linear programming for Graph Pricing is at most 1/2 + $ε$. This work is based on the effort to view the Graph Pricing problem as a Constraint Satisfaction Problem (CSP) simpler than the standard and complicated formulation. We propose the problem called Generalized Max-Dicut($T$), which has a domain size $T + 1$ for every $T \geq 1$. Generalized Max-Dicut(1) is well-known Max-Dicut. There is an approximation-preserving reduction from Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and both our results are achieved through this reduction. Besides its connection to Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own right since in most arity two CSPs studied in the literature, SDP-based algorithms perform better than LP-based or combinatorial algorithms --- for this arity two CSP, a simple combinatorial algorithm does the best.

28 pages

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green