Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2001 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thyroid Hormone Stimulates Acetyl-CoA Carboxylase-α Transcription in Hepatocytes by Modulating the Composition of Nuclear Receptor Complexes Bound to a Thyroid Hormone Response Element

Authors: Y, Zhang; L, Yin; F B, Hillgartner;

Thyroid Hormone Stimulates Acetyl-CoA Carboxylase-α Transcription in Hepatocytes by Modulating the Composition of Nuclear Receptor Complexes Bound to a Thyroid Hormone Response Element

Abstract

Triiodothyronine (T3) stimulates a 7-fold increase in transcription of the acetyl-CoA carboxylase-alpha (ACCalpha) gene in chick embryo hepatocytes. Here, we characterized an ACCalpha T3 response element (ACCalpha-T3RE) with unique functional and protein binding properties. ACCalpha-T3RE activated transcription both in the absence and presence of T3, with a greater activation observed in the presence of T3. In nuclear extracts from hepatocytes incubated in the absence of T3, ACCalpha-T3RE bound protein complexes (complexes 1 and 2) containing the liver X receptor (LXR) and the retinoid X receptor (RXR). In nuclear extracts from hepatocytes incubated in the presence of T3 for 24 h, ACCalpha-T3RE bound a different set of complexes. One complex contained LXR and RXR (complex 3) and another contained the nuclear T3 receptor (TR) and RXR (complex 4). Mutations of ACCalpha-T3RE that inhibited the binding of complexes 1 and 2 decreased transcriptional activation in the absence of T3, and mutations of ACCalpha-T3RE that inhibited the binding of complexes 3 and 4 decreased transcriptional activation in the presence of T3. The stimulation of ACCalpha transcription caused by T3 was closely associated with changes in the binding of complexes 1-4 to ACCalpha-T3RE. These data suggest that T3 regulates ACCalpha transcription by a novel mechanism involving changes in the composition of nuclear receptor complexes bound to ACCalpha-T3RE. We propose that complexes containing LXR/RXR ensure a basal level of ACCalpha expression for the synthesis of structural lipids in cell membranes and that complexes containing LXR/RXR and TR/RXR mediate the stimulation of ACCalpha expression caused by T3.

Keywords

Genomic Library, Binding Sites, Receptors, Thyroid Hormone, Base Sequence, Receptors, Retinoic Acid, Receptors, Cytoplasmic and Nuclear, Chick Embryo, Orphan Nuclear Receptors, Recombinant Proteins, DNA-Binding Proteins, Retinoid X Receptors, Liver, Consensus Sequence, Hepatocytes, Mutagenesis, Site-Directed, Animals, Chickens, Cells, Cultured, Acetyl-CoA Carboxylase, Liver X Receptors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
gold