<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 12711303
Axin was found as a negative regulator of the canonical Wnt pathway. Human LRP5 was originally found as a candidate gene of insulin dependent diabetes mellitus (IDDM), but its Drosophila homolog, Arrow, works as a co-receptor of the canonical Wnt signal. In our previous paper, we found a new Drosophila Axin (Daxin)-binding SH3 protein, DCAP, a homolog of mammalian CAV family protein. Among the subtypes, DCAPL3 shows significant homology with CAP, an essential component of glucose transport in insulin signal. Further binding assay revealed that DCAP binds to not only Axin but also Arrow, and Axin binds to not only GSK3beta but also Arrow. However, overexpression and RNAi experiments of DCAP do not affect the canonical Wnt pathway. As DCAP is expressed predominantly in insulin-target organs, and as RNAi of DCAP disrupts the pattern of endogenous glycogen accumulation in late stage embryos, we suggest that DCAP is also involved in glucose transport. Moreover, early stage embryos lacking maternal Axin show significant delay of initial glycogen decomposition, and RNAi of Axin in S2 cells revealed quite increase of endogenous glycogen level as well as GSK3beta. These results suggest that Axin and DCAP mediate glucose-glycogen metabolism in embryo. In addition, the interaction among Axin, Arrow, and DCAP implies a possible cross-talk between Wnt signal and insulin signal.
Embryo, Nonmammalian, Microfilament Proteins, Receptors, Cell Surface, Spodoptera, Cell Line, Protein Structure, Tertiary, Glucose, Axin Protein, Mutation, Animals, Drosophila Proteins, Insulin, Drosophila, RNA Interference, Amino Acid Sequence, Carrier Proteins, Sequence Alignment, Glycogen, Adaptor Proteins, Signal Transducing, Signal Transduction
Embryo, Nonmammalian, Microfilament Proteins, Receptors, Cell Surface, Spodoptera, Cell Line, Protein Structure, Tertiary, Glucose, Axin Protein, Mutation, Animals, Drosophila Proteins, Insulin, Drosophila, RNA Interference, Amino Acid Sequence, Carrier Proteins, Sequence Alignment, Glycogen, Adaptor Proteins, Signal Transducing, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |