Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1984 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Steps in processing of the mitochondrial cytochrome oxidase subunit I pre-mRNA affected by a nuclear mutation in yeast.

Authors: Gérard Faye; Michel Simon;

Steps in processing of the mitochondrial cytochrome oxidase subunit I pre-mRNA affected by a nuclear mutation in yeast.

Abstract

In Saccharomyces cerevisiae, the mitochondrial gene encoding the subunit I of cytochrome c oxidase (oxi-3 gene) is interrupted by intervening sequences. In this report, a nuclear mutation [referred to as mss51 in Faye, G. & Simon, M. (1983) Cell 32, 77-87] that specifically affects the processing of oxi-3 pre-mRNA was further characterized. DNA probes covering each oxi-3 exon-intron boundary were individually hybridized to wild-type and mutant mitochondrial RNA. By a technique relying on the S1 nuclease resistance or sensitivity of the RNA X DNA hybrids thereof, we have shown which site needs the MSS51 gene product to be cleaved. The mutation in the MSS51 gene gave rise to a complex pattern of splicing: the third intron was excised efficiently but the first two introns remained bracketed by their flanking exons. Further, the fourth and fifth introns were only partially split from their common exon and remained fused to their upstream and downstream flanking exon, respectively. Several plausible roles for the MSS51 gene product are discussed.

Keywords

Cell Nucleus, Saccharomyces cerevisiae Proteins, Base Sequence, Macromolecular Substances, Genes, Fungal, Nucleic Acid Hybridization, Nucleic Acid Precursors, DNA Restriction Enzymes, Saccharomyces cerevisiae, DNA, Mitochondrial, Mitochondria, Electron Transport Complex IV, Genes, Mutation, RNA Precursors, RNA, Messenger, Cloning, Molecular, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Average
Top 10%
Top 10%
bronze