
Until recently, the best performing copying garbage collectors used a generational policy which repeatedly collects the very youngest objects, copies any survivors to an older space, and then infrequently collects the older space. A previous study that used garbage-collection simulation pointed to potential improvements by using an Older-First copying garbage collection algorithm. The Older-First algorithm sweeps a fixed-sized window through the heap from older to younger objects, and avoids copying the very youngest objects which have not yet had sufficient time to die. We describe and examine here an implementation of the Older-First algorithm in the Jikes RVM for Java. This investigation shows that Older-First can perform as well as the simulation results suggested, and greatly improves total program performance when compared to using a fixed-size nursery generational collector. We further compare Older-First to a flexible-size nursery generational collector in which the nursery occupies all of the heap that does not contain older objects. In these comparisons, the flexible-nursery collector is occasionally the better of the two, but on average the Older-First collector performs the best.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
