Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
Blood
Article . 1992 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1992 . Peer-reviewed
Data sources: Crossref
Blood
Article . 1992
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

T-cell receptor beta-chain gene rearrangement and expression during human thymic ontogenesis

Authors: BONATI, Antonio; P. Zanelli; S. Ferrari; A. Plebani; B. Starcich; M. Savi; NERI, Tauro Maria;

T-cell receptor beta-chain gene rearrangement and expression during human thymic ontogenesis

Abstract

T-cell receptor (TCR) beta-chain proteins appear early (approximately 15th week of gestation) during human thymic ontogenesis. These beta- chain proteins, which appear before terminal deoxynucleotidyl transferase (TdT), could be an expression of a fully rearranged (V-D- J), incompletely rearranged (D-J), or germline TCR beta-chain gene. The aims of this study, performed from the 15th week onward, were the following: (1) to investigate whether or not TCR beta gene rearranges at an early stage during human thymic ontogenesis; (2) to investigate whether complete presumptive functional (1.3 kb) TCR beta gene transcript is present at these early stages of development, or if incomplete (1 kb) or germ-line (1.1 kb) transcripts are expressed; (3) to examine the phenotype of TCR beta-chain+ cells with two-color fluorescence using monoclonal antibody (MoAb) beta F1 and MoAbs that recognize CD1, CD2, CD3, CD4, CD8, CD5, and CD7 antigens (rabbit anti- calf TdT antiserum was used to detect TdT); and (4) to demonstrate whether or not beta gene N-diversity regions are detectable as early as the 15th week and whether or not N-nucleotide insertions correlate to TdT expression. Fifteen- to 22-week fetal thymuses and pediatric thymuses were investigated. We demonstrated that TCR beta-chain gene rearranged as early as the 15th week in human thymus and that a complete functional TCR beta gene transcript was expressed at these early stages of human development. No other analyses to date have investigated TCR beta gene expression in early human thymus using molecular biology techniques. No significant differences were detectable between phenotypic analysis of fetal and pediatric samples, except for TdT expression, which appeared after the 20th week. Essentially all mCD3+ (OKT3+) cells were beta-chain+ at the different weeks investigated. A significant percentage of CD1+ cells were beta- chain+, and the percentage increased along with the age of development. After the 20th week, we identified three main populations: TdT+, cCD3+, beta F-(early thymic precursors); TdT+, CD1+, beta F1+ (intermediate maturity cortical thymocytes); and TdT-, mCD3+, beta F1++ (mature medullary thymocytes). Given these values, we may consider beta-chain expression an ordered process. beta gene N-nucleotide insertions were correlated to TdT expression, since N-regions increased considerably after the 20th week. A further increase of N-nucleotide insertions was detected from the 22nd week to the 32nd week.

Country
Italy
Related Organizations
Keywords

570, Base Sequence, Transcription, Genetic, Receptors, Antigen, T-Cell, alpha-beta, Molecular Sequence Data, Age Factors, 610, Gene Expression, Thymus Gland, Antigens, CD, DNA Nucleotidylexotransferase, Pregnancy, Humans, Female, Gene Rearrangement, beta-Chain T-Cell Antigen Receptor

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
bronze