
doi: 10.37190/ord220406
As a generalization of convex functions and derivatives, in this paper, the authors study the concept of a symmetric derivative for preinvex functions. Using symmetrical differentiation, they discuss an important characterization for preinvex functions and define symmetrically pseudo-invex and symmetrically quasi-invex functions. They also generalize the first derivative theorem for symmetrically differentiable functions and establish some relationships between symmetrically pseudo-invex and symmetrically quasi-invex functions. They also discuss the Fritz John type optimality conditions for preinvex, symmetrically pseudo-invex and symmetrically quasi-invex functions using symmetrical differentiability.
symmetric derivative, Convex programming, preinvex functions, Management. Industrial management, HD72-88, invex sets, Economic growth, development, planning, Fritz-John optimality conditions, HD28-70
symmetric derivative, Convex programming, preinvex functions, Management. Industrial management, HD72-88, invex sets, Economic growth, development, planning, Fritz-John optimality conditions, HD28-70
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
