Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAUTECH Journal of C...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
LAUTECH Journal of Civil and Environmental Studies
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigating the Performance of Palm Kernel Shells and Periwinkle Shells as Coarse Aggregates in Concrete

Authors: O.J Oladiran; D.R Simeon; O.A Olatunde;

Investigating the Performance of Palm Kernel Shells and Periwinkle Shells as Coarse Aggregates in Concrete

Abstract

Excessive usage of materials is causing fast depletion of natural stone deposit. This study therefore investigates the performance of palm kernel shells (PKS) and periwinkle shells (PS) as alternatives coarse aggregates in concrete. Forty cubes and 40 cylinders each were produced with PKS and PS as replacement materials for granite. Series of tests were conducted to determine their performances. The results showed that, compressive and tensile strengths decrease as PKS and PS content increases, which allow specific area to increase, thus requiring more cement paste to bond effectively with the shells. The result also revealed that for all curing ages, palm kernel shell concrete (PKSC) have lower compressive strength and tensile strength than periwinkle shell concrete (PSC). The compressive strength and tensile strength of the 28-day PKSC with 100% replacement were 4.33 N/mm2 and 3.68 N/mm2 respectively; that of PSC at 100% replacement were 5.89 N/mm2 and 4.95 N/mm2 respectively; and granite concrete without any replacement were 25.11 N/mm2 and 11.74 N/mm2 respectively. It is concluded that both PKSC and PSC satisfied the compressive strength and tensile strength requirement of light weight concrete, although PS has better gradation and bonding to cement than PKS. This implies that PS is best suited as replacement for granite in lightweight concrete than PKS. It is recommended that the mix-ratio should be altered to get higher values of compressive strength; and both PKS and PS should be used for lightweight concretes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze