<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Edge connectivity and vertex connectivity are two fundamental concepts in graph theory. Although by now there is a good understanding of the structure of graphs based on their edge connectivity, our knowledge in the case of vertex connectivity is much more limited. An essential tool in capturing edge connectivity are edge-disjoint spanning trees. The famous results of Tutte and Nash-Williams show that a graph with edge connectivity $��$ contains $\floor{��/2}$ edge-disjoint spanning trees. We present connected dominating set (CDS) partition and packing as tools that are analogous to edge-disjoint spanning trees and that help us to better grasp the structure of graphs based on their vertex connectivity. The objective of the CDS partition problem is to partition the nodes of a graph into as many connected dominating sets as possible. The CDS packing problem is the corresponding fractional relaxation, where CDSs are allowed to overlap as long as this is compensated by assigning appropriate weights. CDS partition and CDS packing can be viewed as the counterparts of the well-studied edge-disjoint spanning trees, focusing on vertex disjointedness rather than edge disjointness. We constructively show that every $k$-vertex-connected graph with $n$ nodes has a CDS packing of size $��(k/\log n)$ and a CDS partition of size $��(k/\log^5 n)$. We prove that the $��(k/\log n)$ CDS packing bound is existentially optimal. Using CDS packing, we show that if vertices of a $k$-vertex-connected graph are independently sampled with probability $p$, then the graph induced by the sampled vertices has vertex connectivity $\tilde��(kp^2)$. Moreover, using our $��(k/\log n)$ CDS packing, we get a store-and-forward broadcast algorithm with optimal throughput in the networking model where in each round, each node can send one bounded-size message to all its neighbors.
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), Combinatorics (math.CO), Computer Science - Discrete Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |