Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants

Authors: Hongjie Li; Jeffrey Sosa-Calvo; Heidi A. Horn; Mônica T. Pupo; Jon Clardy; Christian Rabeling; Ted R. Schultz; +1 Authors

Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants

Abstract

Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming “attine” ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts’ fungus gardens from pathogens. Here we reconstruct ant–Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant–Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genusPseudonocardia. Tracing the evolutionary trajectories ofPseudonocardia-maintaining mechanisms across attine ants reveals a continuum of adaptations. InMyrmicocryptaspecies, which retain many ancestral morphological and behavioral traits,Pseudonocardiaoccur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences inPseudonocardia-maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with verticalPseudonocardiatransmission. Although the majority of attine ants are associated withPseudonocardia, there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant–Pseudonocardiamutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate thatPseudonocardiahave played a critical role in the evolution of ant fungiculture.

Keywords

Actinobacteria, Ants, Host-Pathogen Interactions, Fungi, Animals, Symbiosis, Biological Evolution, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 1%
Top 10%
Top 1%
bronze