Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Nanoarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Nano
Article . 2021 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

Low-Temperature Synthesis of Wafer-Scale MoS2–WS2 Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization

Authors: Hyunho Seok; Yonas Tsegaye Megra; Chaitanya K. Kanade; Jinill Cho; Vinit K. Kanade; Minjun Kim; Inkoo Lee; +4 Authors

Low-Temperature Synthesis of Wafer-Scale MoS2–WS2 Vertical Heterostructures by Single-Step Penetrative Plasma Sulfurization

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention owing to their synergetic effects with other 2D materials, such as graphene and hexagonal boron nitride, in TMD-based heterostructures. Therefore, it is important to understand the physical properties of TMD-TMD vertical heterostructures for their applications in next-generation electronic devices. However, the conventional synthesis process of TMD-TMD heterostructures has some critical limitations, such as nonreproducibility and low yield. In this paper, we synthesize wafer-scale MoS2-WS2 vertical heterostructures (MWVHs) using plasma-enhanced chemical vapor deposition (PE-CVD) via penetrative single-step sulfurization discovered by time-dependent analysis. This method is available for fabricating uniform large-area vertical heterostructures (4 in.) at a low temperature (300 °C). MWVHs were characterized using various spectroscopic and microscopic techniques, which revealed their uniform nanoscale polycrystallinity and the presence of vertical layers of MoS2 and WS2. In addition, wafer-scale MWVHs diodes were fabricated and demonstrated uniform performance by current mapping. Furthermore, mode I fracture tests were performed using large double cantilever beam specimens to confirm the separation of the MWVHs from the SiO2/Si substrate. Therefore, this study proposes a synthesis mechanism for TMD-TMD heterostructures and provides a fundamental understanding of the interfacial properties of TMD-TMD vertical heterostructures.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!