
Investigations of cardiomyopathy mutations in Ca(2+) regulatory proteins troponin and tropomyosin provide crucial information about cardiac disease mechanisms, and also provide insights into functional domains in the affected polypeptides. Hypertrophic cardiomyopathy-associated mutations TnI R145G, located within the inhibitory peptide (Ip) of human cardiac troponin I (hcTnI), and TnT R278C, located immediately C-terminal to the IT arm in human cardiac troponin T (hcTnT), share some remarkable features: structurally, biochemically, and pathologically. Using bioinformatics, we find compelling evidence that TnI and TnT, and more specifically the affected regions of hcTnI and hcTnT, may be related not just structurally but also evolutionarily. To test for functional interactions of these mutations on Ca(2+)-regulation, we generated and characterized Tn complexes containing either mutation alone, or both mutations simultaneously. The most important results from in vitro motility assays (varying [Ca(2+)], temperature or HMM density) show that the TnT mutant "rescued" some deleterious effects of the TnI mutant at high Ca(2+), but exacerbated the loss of function, i.e., switching off the actomyosin interaction, at low Ca(2+). Taken together, our experimental results suggest that the C-terminus of cTnT aids Ca(2+)-regulatory function of cTnI Ip within the troponin complex.
Male, Models, Molecular, Molecular Sequence Data, Troponin I, Myosins, Recombinant Proteins, Evolution, Molecular, Actin Cytoskeleton, Troponin T, Cardiomyopathy, Hypertrophic, Familial, Animals, Humans, Point Mutation, Calcium, Amino Acid Sequence, Rabbits, Sequence Alignment
Male, Models, Molecular, Molecular Sequence Data, Troponin I, Myosins, Recombinant Proteins, Evolution, Molecular, Actin Cytoskeleton, Troponin T, Cardiomyopathy, Hypertrophic, Familial, Animals, Humans, Point Mutation, Calcium, Amino Acid Sequence, Rabbits, Sequence Alignment
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
