Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2009
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HKU Scholars Hub
Article . 2012
Data sources: HKU Scholars Hub
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An anther‐specific dihydroflavonol 4‐reductase‐like gene (DRL1) is essential for male fertility in Arabidopsis

Authors: Yip, WK; Yeung, EC; Lo, C; Chu, H; Tang, LK;

An anther‐specific dihydroflavonol 4‐reductase‐like gene (DRL1) is essential for male fertility in Arabidopsis

Abstract

Arabidopsis contains only one functional dihydroflavonol 4-reductase (DFR) gene, but several DFR-like genes encoding proteins with the conserved NAD(P)H binding domain. At4g35420, named DRL1 (Dihydroflavonol 4-reductase-like1), is a closely related homolog of the rice anther-specific gene OsDFR2 reported previously. Two T-DNA mutants (drl1-1 and drl1-2) were found to have impaired pollen formation and seed production. Histological analysis revealed defective microspore development after tetrad release in both mutants. Microspore walls were found to rupture, releasing the protoplasts which eventually degenerated. The DRL1 promoter is anther-specific in closed flower buds. Promoter-GUS analysis in transgenic Arabidopsis revealed expression in tapetum, tetrads, and developing microspores, but not in mature anthers. Enhanced yellow fluorescent protein (EYFP)-localization analysis demonstrated that DRL1 is a soluble cytosolic protein that may also be localized in the nucleus. Restoration of male fertility and seed formation was only achieved by a native promoter-DRL1 construct, but not by a 35S-DRL1 construct, demonstrating the importance of spatial and temporal specificities of DRL1 expression. DRL1 may be involved in a novel metabolic pathway essential for pollen wall development. DRL1 homologs were identified as anther- and floral-specific expressed sequence tags from different species, suggesting that DRL1 may have a conserved functional role in male fertility in flowering plants.

Related Organizations
Keywords

DNA, Bacterial, Flowers - Cytology - Enzymology - Genetics - Growth & Development, Arabidopsis, Genetically Modified, Flowers, Dna, Bacterial - Genetics, Promoter Regions, Genetic, Gene Expression Regulation, Plant, Sequence Analysis, Protein, Insertional, Glucuronidase - Metabolism, Bacterial - Genetics, Mutation - Genetics, Promoter Regions, Genetic, Glucuronidase, Alcohol Oxidoreductases - Chemistry - Genetics - Metabolism, Protein, Genetic Complementation Test, Dna, Plant, Plants, Plants, Genetically Modified, Arabidopsis - Cytology - Enzymology - Genetics, Alcohol Oxidoreductases, Mutagenesis, Insertional, Protein Transport, Fertility, Phenotype, Gene Expression Regulation, Mutagenesis, Organ Specificity, Mutation, Sequence Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
bronze