Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied and Environm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied and Environmental Microbiology
Article . 2009 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Proteomic Analysis of Tolerance and Adaptation of EthanologenicSaccharomyces cerevisiaeto Furfural, a Lignocellulosic Inhibitory Compound

Authors: Fengming Lin; Bin Qiao; Ying-Jin Yuan;

Comparative Proteomic Analysis of Tolerance and Adaptation of EthanologenicSaccharomyces cerevisiaeto Furfural, a Lignocellulosic Inhibitory Compound

Abstract

ABSTRACTThe molecular mechanism involved in tolerance and adaptation of ethanologenicSaccharomyces cerevisiaeto inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here,18O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles ofS. cerevisiaeunder conditions of treatment of furfural compared with furfural-free fermentation profiles. Proteins involved in glucose fermentation and/or the tricarboxylic acid cycle were upregulated in cells treated with furfural compared with the control cells, while proteins involved in glycerol biosynthesis were downregulated. Differential levels of expression of alcohol dehydrogenases were observed. On the other hand, the levels of NADH, NAD+, and NADH/NAD+were reduced whereas the levels of ATP and ADP were increased. These observations indicate that central carbon metabolism, levels of alcohol dehydrogenases, and the redox balance may be related to tolerance of ethanologenic yeast for and adaptation to furfural. Furthermore, proteins involved in stress response, including the unfolded protein response, oxidative stress, osmotic and salt stress, DNA damage and nutrient starvation, were differentially expressed, a finding that was validated by quantitative real-time reverse transcription-PCR to further confirm that the general stress responses are essential for cellular defense against furfural. These insights into the response of yeast to the presence of furfural will benefit the design and development of inhibitor-tolerant ethanologenic yeast by metabolic engineering or synthetic biology.

Related Organizations
Keywords

Antifungal Agents, Saccharomyces cerevisiae Proteins, Proteome, Stress, Physiological, Gene Expression Profiling, Furaldehyde, Drug Tolerance, Saccharomyces cerevisiae, Adaptation, Physiological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
bronze