<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ABSTRACTThe molecular mechanism involved in tolerance and adaptation of ethanologenicSaccharomyces cerevisiaeto inhibitors (such as furfural, acetic acid, and phenol) represented in lignocellulosic hydrolysate is still unclear. Here,18O-labeling-aided shotgun comparative proteome analysis was applied to study the global protein expression profiles ofS. cerevisiaeunder conditions of treatment of furfural compared with furfural-free fermentation profiles. Proteins involved in glucose fermentation and/or the tricarboxylic acid cycle were upregulated in cells treated with furfural compared with the control cells, while proteins involved in glycerol biosynthesis were downregulated. Differential levels of expression of alcohol dehydrogenases were observed. On the other hand, the levels of NADH, NAD+, and NADH/NAD+were reduced whereas the levels of ATP and ADP were increased. These observations indicate that central carbon metabolism, levels of alcohol dehydrogenases, and the redox balance may be related to tolerance of ethanologenic yeast for and adaptation to furfural. Furthermore, proteins involved in stress response, including the unfolded protein response, oxidative stress, osmotic and salt stress, DNA damage and nutrient starvation, were differentially expressed, a finding that was validated by quantitative real-time reverse transcription-PCR to further confirm that the general stress responses are essential for cellular defense against furfural. These insights into the response of yeast to the presence of furfural will benefit the design and development of inhibitor-tolerant ethanologenic yeast by metabolic engineering or synthetic biology.
Antifungal Agents, Saccharomyces cerevisiae Proteins, Proteome, Stress, Physiological, Gene Expression Profiling, Furaldehyde, Drug Tolerance, Saccharomyces cerevisiae, Adaptation, Physiological
Antifungal Agents, Saccharomyces cerevisiae Proteins, Proteome, Stress, Physiological, Gene Expression Profiling, Furaldehyde, Drug Tolerance, Saccharomyces cerevisiae, Adaptation, Physiological
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 94 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |