Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Precision Engineerin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Precision Engineering
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell

Authors: Shiou F.-J.; Chuang C.-H.;

Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell

Abstract

Abstract A load-cell-embedded burnishing tool has been newly developed and integrated with a machining center, to improve the surface roughness of the PDS5 plastic injection mold steel. Either the rolling-contact type or the sliding-contact type was possible for the developed ball burnishing tool. The characteristic curves of burnishing force vs. surface roughness for the PDS5 plastic injection mold steel using the developed burnishing tool for both the rolling-contact type and the sliding-contact type, have been investigated and constructed, based on the test results. The optimal plane surface burnishing force for the PDS5 plastic injection mold steel was about 420 N for the rolling-contact type and about 470 N for the sliding-contact type, based on the results of experiments. A force compensation strategy that results in the constant optimal normal force for burnishing an inclined surface or a curved surface, has also been proposed to improve the surface roughness of the test objects in this study. The surface roughness of a fine milled inclined surface of 60 degrees can be improved from Ra 3.0 μm on average to Ra 0.08 μm (Rmax 0.79 μm) on average using force compensation, whereas the surface roughness was Ra 0.35 μm (Rmax 4.56 μm) on average with no force compensation.

Keywords

Force compensation strategy, Surface roughness, Burnishing force, Load-cell-embedded burnishing tool

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!