Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Degree of Ergodicity of ortho- and para-Aminobenzonitrile in an Electric Field

Authors: Eric J. Heller; S. M. Pittman;

The Degree of Ergodicity of ortho- and para-Aminobenzonitrile in an Electric Field

Abstract

We study the dynamics of the two molecules ortho-aminobenzonitrile (OABN) and para-aminobenzonitrile (PABN). They are structural isomers, with differing asymmetries and dipole moments. In this paper, we show that the dynamics of the system strongly depends on the region of phase space of the initial rotational state, the asymmetry of the molecule, and on the direction of the dipole. We also show that the ergodicity of the system varies gradually with energy, except where the rotational energy of the initial state is much less than the Stark interaction. In this regime, the projection of the dipole along the lab-frame z-axis varies linearly with increasing energy and follows the microcanonical ergodic estimate. Both molecules are far from full chaos for total angular momentum quanta J ∈ [0,45]. However, the initial rotational states in OABN access much more of the available phase space than in PABN. We show that this is a likely cause for the experimental discrepancies in molecular beam deflection experiments.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!