Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of calcium-independent phospholipase A2γ in mitochondria and its role in mitochondrial oxidative stress

Authors: Caroline S. Beckett; Rick G. Schnellmann; Gilbert R. Kinsey; Jane McHowat;

Identification of calcium-independent phospholipase A2γ in mitochondria and its role in mitochondrial oxidative stress

Abstract

Oxidant-induced lipid peroxidation and cell death mediate pathologies associated with ischemia-reperfusion and inflammation. Our previous work in rabbit renal proximal tubular cells (RPTC) demonstrated that inhibition of Ca2+-independent phospholipase A2(iPLA2) potentiates oxidant-induced lipid peroxidation and necrosis, implicating iPLA2in phospholipid repair. This study was conducted to identify a RPTC mitochondrial PLA2and determine the role of PLA2in oxidant-induced mitochondrial dysfunction. iPLA2activity was detected in Percoll-purified rabbit renal cortex mitochondria (RCM) and in isolated mitochondrial inner membrane fractions from rabbit and human RCM. Immunoblot analysis and inhibitor sensitivity profiles revealed that iPLA2γ is the RCM iPLA2activity. RCM iPLA2activity was enhanced in the presence of ATP and was blocked by the PKCε V1–2 inhibitor. Oxidant-induced mitochondrial lipid peroxidation and swelling were accelerated by pretreatment with R-BEL, but not S-BEL. Furthermore, oxidant treatment of isolated RCM resulted in decreased iPLA2γ activity. These results reveal that RCM iPLA2is iPLA2γ, RCM iPLA2γ is regulated by phosphorylation by PKCε, iPLA2γ protects RCM from oxidant-induced lipid peroxidation and dysfunction, and that a strategy to preserve or enhance iPLA2γ activity may be of therapeutic benefit.

Related Organizations
Keywords

Kidney Cortex, Group IV Phospholipases A2, Butylated Hydroxyanisole, Naphthalenes, Phospholipases A, Mitochondria, Oxidative Stress, Pyrones, Animals, Humans, Female, Ferrous Compounds, Rabbits, Mitochondrial Swelling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?