Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Assembly Behavior of Triphenylene-Based Side-Chain Discotic Liquid Crystalline Polymers

Authors: Minqing Gong; Qiuyan Yu; Shiying Ma; Fang Luo; Rong Wang; Dongzhong Chen;

Self-Assembly Behavior of Triphenylene-Based Side-Chain Discotic Liquid Crystalline Polymers

Abstract

We constructed a generic coarse-grained model of triphenylene-based side-chain discotic liquid crystalline polymers (SDLCPs). Then dissipative particle dynamics (DPD) simulation was employed to systematically study how composition and structural factors of SDLCPs such as molecular weight, main chain, spacer and aliphatic tails, and the incompatibility between mesogenic core and its substituents influence their mesophases and self-assembly behavior. Eight mesophases were obtained by changing the factors mentioned above. The eight phases are hexagonal columnar–amorphous (Colh-Am), nematic columnar–amorphous (Colne-Am), nematic columnar–clustered (Colne-Clu), nematic columnar–columnar (Colne-Col), random columns–amorphous (Colran-Am), random columnar–clustered (Colran-Clu), amorphous–amorphous (Am-Am), and sphere–amorphous (Sph-Am). The name of mesophase is denoted as “assembly of discogens-aggregation of backbone”. By checking conformation of molecules, the intracolumnar self-assembling patterns based on th...

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!