Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Textile Research Jou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of projectile nose geometry on the critical velocity and failure of yarn subjected to transverse impact

Authors: Emily Jewell; Weinong Chen; Suzanne Horner; Boon Him Lim; Matthew Hudspeth; Jou-Mei Chu; James Zheng; +2 Authors

Effect of projectile nose geometry on the critical velocity and failure of yarn subjected to transverse impact

Abstract

Three different types of yarn have been subjected to transverse impact experiments in efforts to gain an understanding of local yarn failure and to provide input parameters for future transverse yarn impact simulations. Dupont™ Kevlar® KM2, DSM Dyneema® SK76, and AuTx® from JSC Kamenskvolokno were selected as representative materials, as the former two are commonly implemented into bullet resistant panels and the latter is a promising material for future impact resistant fabrics. In order to assess the effect of projectile nose shape on the critical rupture velocity range for each yarn type, three missile geometries have been implemented, namely a 0.30 caliber rounded head, a 0.30 caliber chisel nosed fragment simulation projectile (FSP), and a high-carbon steel razor blade. As opposed to one single velocity wherein yarn behavior transitions from transverse wave development to immediate local failure, a range is defined wherein progressive filament failure is detected with increasing impact velocities. Such ranges are determined for all yarn types using the three projectile geometries yielding critical velocity transition regions of increasing value when impacting via razor blade, FSP, and round projectile heads, accordingly. In addition, post-mortem fracture surfaces recovered from impact experiments have been imaged so as to elucidate the mechanism of failure throughout the range of velocities tested for each projectile type and yarn material and said fracture surfaces correlate well with impact velocity and projectile nose geometry.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?