Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1993 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Changes in intra- or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance.

Authors: G A, Altenberg; G, Young; J K, Horton; D, Glass; J A, Belli; L, Reuss;

Changes in intra- or extracellular pH do not mediate P-glycoprotein-dependent multidrug resistance.

Abstract

P-glycoprotein (Pgp)-mediated multidrug resistance (MDR) is thought to result from active extrusion of lipid-soluble, titratable chemotherapeutic agents. Given the lack of demonstration of coupling between ATP hydrolysis and drug transport, the resistance to chemically unrelated compounds, and findings of elevated intracellular pH (pHi), it has been proposed that reduced intracellular accumulation of drugs in MDR is due to changes in the pH difference across the plasma membrane. Elevation of pHi or decrease in local extracellular pH (pHo) could reduce the intracellular accumulation of the protonated chemotherapeutic drugs and account for Pgp-mediated MDR. Alternatively, changes in pHi or pHo could increase drug efflux by other mechanisms, such as coupled transport involving H+ or OH-, or allosteric effects on Pgp or other proteins. Both mechanisms could operate independently of the charge of the substrate. The possibility of a role of pHi in drug efflux is important to test because of the clinical significance of the phenomenon of MDR of tumors. We tested this hypothesis and found that MDR can occur in cells with low, normal, or high pHi. Further, resistant cells exhibited reduced steady-state drug accumulation and increased efflux without changes in local pHo. Finally, acute changes in pHi had no appreciable effect on Pgp-mediated drug efflux. We conclude that Pgp-mediated MDR is not a consequence of changes in pHi or pHo.

Keywords

Membrane Glycoproteins, Rhodamines, Drug Resistance, Biological Transport, Hydrogen-Ion Concentration, In Vitro Techniques, Cell Line, Cricetinae, Animals, Rhodamine 123, ATP Binding Cassette Transporter, Subfamily B, Member 1, Carrier Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Average
Top 10%
Top 10%
bronze