Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CD45 monoclonal antibodies inhibit TCR-mediated calcium signals, calmodulin-kinase IV/Gr activation, and oncoprotein 18 phosphorylation.

Authors: E, Shivnan; L, Clayton; L, Allridge; K E, Keating; M, Gullberg; D R, Alexander;

CD45 monoclonal antibodies inhibit TCR-mediated calcium signals, calmodulin-kinase IV/Gr activation, and oncoprotein 18 phosphorylation.

Abstract

Abstract The effects of a pan-CD45 mAb (CD45.2) on TCR-mediated signaling pathways were investigated in Jurkat T cells. The simultaneous addition of CD45 mAb with an activating OKT3 mAb had little effect on TCR-stimulated signals. However, when Jurkat cells were exposed to the CD45 mAb for 10 to 20 min before the addition of OKT3, a partial uncoupling of the TCR from intracellular signals was observed. The maximal increase in intracellular calcium was inhibited 47 +/- 10% (n = 11, range 33-67%), whereas no inhibition of inositol trisphosphate production was detected. The transient TCR-mediated activation of the Ca2+/calmodulin-activated kinase IV/Gr was also inhibited by the CD45 mAb, and this was reflected in a 50 to 60% inhibition in the TCR-stimulated generation of the p21 and p23 phosphoisomers of oncoprotein 18, a Ca2+/calmodulin-activated kinase IV/Gr substrate recently implicated in cell cycle regulatory events. Oncoprotein 18 is also a substrate for mitogen- activated protein kinase, but no inhibition by the CD45 mAb of TCR-triggered mitogen-activated protein kinase activation was observed. The CD45 mAb was therefore selective in causing the uncoupling of the TCR from calcium signals and calcium-regulated events without promoting a general inhibition of all TCR-mediated signals. Confocal microscopy revealed that binding of the CD45 mAb caused patching of CD45 molecules at the cell surface and, unexpectedly, a marked redistribution of intracellular CD45. However, no change was observed in the total level of CD45 expressed at the cell surface. Aggregation of CD45 at the cell surface may result in its sequestration from its tyrosine kinase substrates, with a consequent selective uncoupling of the TCR from intracellular signaling pathways.

Keywords

Leukemia, T-Cell, CD3 Complex, Receptors, Antigen, T-Cell, Antibodies, Monoclonal, Inositol 1,4,5-Trisphosphate, Protein Serine-Threonine Kinases, Phosphoproteins, Enzyme Activation, Calcium-Calmodulin-Dependent Protein Kinases, Microtubule Proteins, Tumor Cells, Cultured, Humans, Leukocyte Common Antigens, Stathmin, Calcium, Phosphorylation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!