Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression

Authors: Gebbie, L; Burn, Joanne E; Hocart, Charles; Williamson, Richard;

Genes encoding ADP-ribosylation factors in Arabidopsis thaliana L. Heyn.; genome analysis and antisense suppression

Abstract

Vesicle trafficking delivers proteins to intracellular and extracellular compartments, cellulose synthase to the plasma membrane, and non-cellulosic polysaccharides to the cell wall. The Arabidopsis genome potentially encodes 19 proteins with sequence similarities to ARFs (ADP-ribosylation factors) and its relatives such as ARLs (ARF-like proteins). ARFs are essential for vesicle coating and uncoating in all eukaryotic cells, while ARLs play more diverse roles. Nine proteins, six of them highly similar, are possible ARFs, three are putative ARL orthologues and the remainder were designated ARF-related proteins. The functions of the six highly similar, putative ARFs in whole plant development were probed by suppressing their expression with antisense. Antisense plants were severely stunted because cell production rate and final cell size were both reduced. Changed time-to-flowering, apical dominance, and fertility may reflect alterations to hormonal and other signalling pathways with which ARFs may interact. No gross changes in targeting or compartmentalization were seen in antisense plants containing GFP targeted to the ER and Golgi and changes in cell wall composition were limited to increases in some non-cellulosic polysaccharides and a relatively small decrease in cellulose. The reasons why these effects are less drastic than the effects on endomembranes and wall composition that are seen in short-term experiments with brefeldin A and with dominant negative ARF mutants are discussed.

Keywords

Plasma membranes, Arabidopsis thaliana, Cell division, Cells, Molecular Sequence Data, Cell production, 0607 Plant Biology, Arabidopsis, complementary DNA, primer ADP-ribosylation factor, Vesicle trafficking, Flowers, Polymerase Chain Reaction, Plants (botany), DNA, Antisense, Cell expansion, adenosine diphosphate ribosylation factor, Suppression, Genetic, Polysaccharides, Amino Acid Sequence, Antisense, Cellulose, Phylogeny, DNA Primers, Cellulose synthase, 580, Arabidopsis protein, Base Sequence, Sequence Homology, Amino Acid, ADP-Ribosylation Factors, Arabidopsis Proteins, Keywords: Biological membranes, Enzymes, Plant Leaves, ADP-ribosylation factor, Fertility, Genes, Sequence Alignment, Genome, Plant

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
Green
bronze