Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.52202/07901...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Effective Exploration Based on the Structural Information Principles

Authors: Xianghua Zeng; Hao Peng; Angsheng Li;

Effective Exploration Based on the Structural Information Principles

Abstract

Traditional information theory provides a valuable foundation for Reinforcement Learning, particularly through representation learning and entropy maximization for agent exploration. However, existing methods primarily concentrate on modeling the uncertainty associated with RL's random variables, neglecting the inherent structure within the state and action spaces. In this paper, we propose a novel Structural Information principles-based Effective Exploration framework, namely SI2E. Structural mutual information between two variables is defined to address the single-variable limitation in structural information, and an innovative embedding principle is presented to capture dynamics-relevant state-action representations. The SI2E analyzes value differences in the agent's policy between state-action pairs and minimizes structural entropy to derive the hierarchical state-action structure, referred to as the encoding tree. Under this tree structure, value-conditional structural entropy is defined and maximized to design an intrinsic reward mechanism that avoids redundant transitions and promotes enhanced coverage in the state-action space. Theoretical connections are established between SI2E and classical information-theoretic methodologies, highlighting our framework's rationality and advantage. Comprehensive evaluations in the MiniGrid, MetaWorld, and DeepMind Control Suite benchmarks demonstrate that SI2E significantly outperforms state-of-the-art exploration baselines regarding final performance and sample efficiency, with maximum improvements of 37.63% and 60.25%, respectively.

10 pages in main paper and 15 pages in appendix

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green