
AbstractLarge-scale urban systems simulations are complex and with a large number of active simulation entities the computational workload is extensive. Workstation computers have only limited capabilities of delivering results for large-scale simulations. This leads to the problem that many researchers and engineers have to either reduce the scope of their experiments or fail to execute as many experiments as they would like in a given time frame. The use of high-performance computing (HPC) infrastructure offers a solution to the problem. Users of such simulations are often domain experts with no or little experience with HPC environments. In addition users do not necessarily have access to an HPC. In this paper we propose an architecture for a cloud-based urban systems simulation platform which specifically aims at making large-scale simulations available to typical users. The proposed architecture also addresses the issue of data confidentiality. In addition we describe the Scalable Electro-Mobility Simulation (SEMSim) Cloud Service that implements the proposed architecture.
Agent-based simulation, Traffic simulation, Urban systems simulations, Hardware and Architecture, Modelling and Simulation, Performance evaluation, High performance computing, Cloud-based simulation, Simulation, Software, ddc: ddc:
Agent-based simulation, Traffic simulation, Urban systems simulations, Hardware and Architecture, Modelling and Simulation, Performance evaluation, High performance computing, Cloud-based simulation, Simulation, Software, ddc: ddc:
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
