Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 1996 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Brain Research
Article . 1996
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the Na/K pump current in N20.1 oligodendrocytes

Authors: M, Dobretsov; J R, Stimers;

Characterization of the Na/K pump current in N20.1 oligodendrocytes

Abstract

Glial cell Na,K-ATPase is suggested to participate in extracellular K+ concentration ([K+]o) control by being activated when [K+]o rises in the brain. The extent of that activation directly depends on the Na/K pump affinity to [K+]o, intracellular Na+ ([Na+]i) and, indirectly on pump cycle regulation by membrane potential (Vm). In the present investigation, these Na/K pump properties were studied with the whole-cell patch-clamp technique in cultured mouse oligodendrocytes (N20.1 cell line). N20.1 cells possess ouabain-sensitive Na/K pump current (Ip) with a maximal density of 0.5-0.6 pA/pF (estimated for conditions of Na/K pump stimulation by saturating [Na+]i, [ATP]i, [K+]o and at positive Vm). This current was half-inhibited at 83 +/- 31 microM ouabain, and half-activated by [Na+]i of 9.6 +/- 1.1 mM, by [K+]o of 2.0 +/- 0.1 mM and by membrane potential at about -65 mV. High levels of nervous activity may increase [K+]o from 3 to 12 mM which would only increase Na/K pump current by 40% due to the direct effect of [K+]o. However, elevated [K+]o would also depolarize the glial cell membrane which would indirectly activate Ip and together with the direct effect of [K+]o would increase Ip as much as 2-2.5-fold. These data suggest that glial cell Na/K pump regulation by Vm may be an important factor in determining the participation of the Na/K pump in [K+]o homeostasis in the nervous system.

Related Organizations
Keywords

Patch-Clamp Techniques, Sodium, Electric Conductivity, Membrane Potentials, Mice, Oligodendroglia, Potassium, Animals, Enzyme Inhibitors, Sodium-Potassium-Exchanging ATPase, Ouabain, Ion Channel Gating, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!