Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Image Processing
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate Pedestrian Detection by Human Pose Regression

Authors: Badong Chen; Zejian Yuan; Yun Zhao;

Accurate Pedestrian Detection by Human Pose Regression

Abstract

Pedestrian detection with high detection and localization accuracy is increasingly important for many practical applications. Due to the flexible structure of the human body, it is hard to train a template-based pedestrian detector that achieves a high detection rate and a good localization accuracy simultaneously. In this paper, we utilize human pose estimation to improve the detection and localization accuracy of pedestrian detection. We design two kinds of pose-indexed features that can considerably improve the discriminability of the detector. In addition to employing a two-stage pipeline to carry out these two tasks, we unify pose estimation and pedestrian detection into a cascaded decision forest in which they can cooperate sufficiently. To prevent irregular positive examples, such as truncated ones, from distracting the pedestrian detection and the pose regression, we clean the positive training data by realigning the bounding boxes and rejecting the wrong positive samples. Experimental results on the Caltech test dataset demonstrate the effectiveness of our proposed method. Our detector achieves 11.1% MR-2, outperforming all existing detectors without using the convolutional neural network (CNN). Moreover, our method can be assembled with other detectors based on CNNs to improve detection and localization performance. By collaborating with the recent CNN-based method, our detector achieves 5.5% MR-2 on the Caltech test dataset, outperforming the state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!