
pmid: 16332201
▪ Abstract Insulin-like peptides (ILPs) exist in insects and are encoded by multigene families that are expressed in the brain and other tissues. Upon secretion, these peptides likely serve as hormones, neurotransmitters, and growth factors, but to date, few direct functions have been demonstrated. In Drosophila melanogaster, molecular genetic studies have revealed elements of a conserved insulin signaling pathway, and as in other animal models, it appears to play a key role in metabolism, growth, reproduction, and aging. This review offers (a) an integrated summary of the efforts to characterize the distribution of ILPs in insects and to define this pathway and its functions in Drosophila and (b) a few considerations for future studies of ILP endocrinology in insects.
Insecta, Diptera, Reproduction, Longevity, Invertebrates, Receptor, Insulin, Lepidoptera, Drosophila melanogaster, Somatomedins, Animals, Humans, Insect Proteins, Insulin, Orthoptera, Signal Transduction
Insecta, Diptera, Reproduction, Longevity, Invertebrates, Receptor, Insulin, Lepidoptera, Drosophila melanogaster, Somatomedins, Animals, Humans, Insect Proteins, Insulin, Orthoptera, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 501 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
