
doi: 10.1051/ro/2018043
Let k ≥ 1 be an integer and G be a simple and finite graph with vertex set V(G). A signed double Roman k-dominating function (SDRkDF) on a graph G is a function f:V(G) → {−1,1,2,3} such that (i) every vertex v with f(v) = −1 is adjacent to at least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with f(w) ≥ 2 and (iii) ∑u∈N[v]f(u) ≥ k holds for any vertex v. The weight of a SDRkDF f is ∑u∈V(G) f(u), and the minimum weight of a SDRkDF is the signed double Roman k-domination number γksdR(G) of G. In this paper, we investigate the signed double Roman k-domination number of trees. In particular, we present lower and upper bounds on γksdR(T) for 2 ≤ k ≤ 6 and classify all extremal trees.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
