Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tensor Component and Matrix Notations

Authors: George J. Dvorak;

Tensor Component and Matrix Notations

Abstract

Derivations and presentations of results in this book will appear in the tensor components, or in the related matrix notation. In the tensor component or subscript notation, vectors or first-order tensors are denoted by lower case italics with a single letter subscript, such as \( {n_i} \) or \( {\nu_j} \), while second, third and fourth-order tensors are written as \( {\varepsilon_{\textit{ij}}},\,\,{ \in_{\textit{ijk}}},\,\,{L_{\textit{ijkl}}} \), with the number of subscripts indicating the order or rank R of the tensor. The subscripts have a certain assigned range of values, which is i, j,… = 1, 2, 3, or \( \rho = 3 \) for tensorial quantities in the Cartesian coordinates \( {x_i} \). The number of tensor components is \( N = {R^{\rho }} \). It is then convenient to write the components of a first, second or fourth order tensors as \( {(3} \times {1),}\,\,{(3} \times {3)}\,\,{\text{\; or (9}} \times {9)} \) arrays, which need not conform to the rules of matrix algebra. The third order tensor can be displayed in three \( {(3} \times {3)} \) arrays.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!